Markov logic network and its application in text classification Markov逻辑网及其在文本分类中的应用
Algorithm research of Markov network structural learning based on information entropy 基于信息熵的Markov网络结构学习算法研究
Transferring Markov Network for Information Retrieval Model 信息检索中迁移Markov网络模型的研究
It ′ s showed that the elevator configuration based on the new model can decrease the average waiting time of passengers and the elevator average load effectively. So it is superior and more practicable to model the elevator traffic flow using Markov network queuing theory. 结果表明,基于新模型的电梯配置可有效降低乘客平均候梯时间和电梯平均载荷,从而证明了利用马尔可夫网络排队论建立电梯交通模型的可行性和优越性。
Markov Network is an undirected graphical network that is capable of efficiently representing relevance in knowledge and can be easily gotten from training data. Markov网络是另一种较好的表示知识关联的图形表示方法,可以从实例数据来训练获得,并且它的无向性能更好地解释信息检索中知识之间的关系同时也更易于构造。
A method of learning Bayesian network by first learning Markov network is given. 提出了一种通过发现Markov网得到等价的Bayesian网的方法。
The traffic flow model is founded based on Markov network queuing theory and the results of the model are applied to elevator configuration. Then this method of elevator configuration is compared with traditional method. 利用马尔可夫网络排队论对电梯交通流建模,并求解该模型,然后将求解结果应用到电梯配置中,通过实例与传统的电梯配置作比较。
It is an important and difficult research project to learn decomposable Markov network structure with missing data. Missing data makes the dependency relationship between variables more disordered and it impossible to learn decomposable Markov network structure directly. 具有丢失数据的可分解马尔可夫网络结构学习是一个重要而困难的研究课题,数据的丢失使变量之间的依赖关系变得混乱,无法直接进行可靠的结构学习。
It is an important and difficult research project to learn hide variables in Markov network. 马尔科夫网络中的隐藏变量学习是一个重要而困难的研究课题。
Then we implement a system, which utilizes Markov network to learn the prior on the high-resolution images. 然后研究基于学习的一般图像超分辨率技术,利用马尔可夫网络来学习图像的先验知识。并且给出了一种基于学习的图像超分辨率算法的系统实现。
The article applies the Markov network theory to build the elevator traffic model. Based on the model elevator configuration parameters of the serving stations are calculated. 利用马尔可夫网络排队理论建立了电梯交通模型,在此基础上对各服务站的电梯配置交通进行计算,得到电梯的配置参数。
Extended information retrieval model based on Markov network 基于Markov网络的信息检索扩展模型
Learning Markov Network Based on the Boundary 基于边界的Markov网的发现
Uncertainty knowledge representation can be divided into two parts. One of them is knowledge representation based on probability theory such as belief network model, dynamic causality diagram model, markov network model, the method used in PROSPECTOR specialist system and so on. 不确定的知识表达可分为两大类:一类是基于概率的方法,包括信度网、因果图、马尔可夫网以及在PROSPECTOR中使用的方法等。
However, the elevator-optimizing configuration based on elevator traffic flow Markov network queuing model, which is according to real traffic flow station and synthetically consider all sorts of factor which influence elevator system configuration. 而基于电梯交通流马尔可夫网络排队模型的电梯配置,根据实际交通流情况,并综合考虑各种影响因素,使得电梯配置方案更加符合实际情况。
Model and Application of Elevator Traffic Based on Markov Network Queuing Theory 基于马尔可夫网络排队论的电梯交通建模及应用
Information Retrieval Model Based on Markov Network of Latent Semantic 一种基于潜在语义的Markov网络信息检索模型
Experimental results show that this method is effective in learning hide variables in Markov network. 试验结果表明,该方法能够有效地进行马尔科夫网络的隐藏变量学习。
Markov network is an another powerful tool besides Bayesian network, which can be used to do uncertain inference. Markov网(马尔可夫网)是类似于Bayesian网(贝叶斯网)的另一种进行不确定性推理的有力工具。
Taking advantage of an important conclusion in information theory to test conditional independence, a dependency analysis based Markov network learning algorithm ( edge deleting algorithm) is presented. 首先利用信息论中验证信息独立的一个重要结论,提出了一个基于依赖分析的边删除算法发现Markov网。
It has been proved that if the joint probability obtained from the sample data is strictly positive, the found Markov network must be the minimal I map of the sample. 经证明,假如由样本数据得到的联合概率函数严格为正,则该算法发现的Markov网一定是样本的最小I图。
Markov Network is a graphical model; it has good learning mechanism and can represent the knowledge association effectively. Markov网络是一种图形表示方法,它具有很好的学习机制,并能有效表示知识关联。
Then, By Using Markov Network as learning Model, this paper studies the special kind of face image. 然后,以马尔可夫网络为学习模型,研究人脸这一特殊类别图像。
This thesis adopts Markov network ( MN) model to propose a new frame description restructuring mechanism. 然后,本文采用马尔可夫网络(MN)模型提出了一个新的框架描述重构机制。
This paper proposes method of cross-domain network public opinion tendency, which is based on multi-task transfer learning based on Markov logic network, design and implement analysis system of public opinion tendency. 通过跨领域知识迁移的分析方法&基于Markov逻辑网的多任务迁移学习,设计并实现了网络舆情倾向性分析系统。
We deeply analyze the relevant theories on Markov Logic Network and propose a method on how to use Markov Logic Network relevant theories to improve spam filtering adaptability. 深入研究了马尔可夫逻辑网的相关理论。提出了如何将马尔可夫逻辑网的相关理论应用到垃圾邮件过滤中,提高其自适应性。
Markov logic networks not only handle uncertainty and complexity effectively, but also can be used as a template of constructing Markov network, which means it has a very wide range of applications. 它可以很好地处理不确定性与复杂性,还可以作为构建马尔可夫网的模板,有着十分广泛的应用。
Based on the assumption that the disparity field is continuous, traditional methods regard the disparity field as a Markov network that transmits two-way information. 基于视差场的连续性假设,传统视差估计置信传播算法将稠密视差场抽象为一种马尔可夫场,置信传播在消息双向传递的马尔可夫网络上进行。
The proposal of Markov Logic Network meets these two aspects. 马尔科夫逻辑网络的提出正是为了满足这两方面的需求。
After analyzing the advantages and disadvantages of each method, we point out that the adaptability based on Markov Logic Network is worth deeply study, it is an important method to improve the adaptability. 2. 分析各自的优缺点,指出基于马尔可夫逻辑网的自适应方法值得深入研究,是提高自适应性的重要手段。